CS 4530: Fundamentals of Software Engineering
Module 13: Continuous Development

Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives for this lesson

* By the end of this lesson, you should be
able to...

e Describe how continuous integration helps to
catch errors sooner in the software lifecycle

e Describe strategies for performing quality-
assurance on software as and after it is delivered

* Compare and contrast continuous delivery with
test driven development as a quality assurance
strategy

Review: The Agile Model Reduces Risk by
Embracing Change (~2000)

* The Waterfall philosophy:

* "The project is too large and complex, and it will take months

(or years!) to plan, so once we come up with the plan, that
plan can not change"

* Reduce risk by proceeding in stages
* The Agile philosophy:

* The project is too large and compley, it is unlikely that we will
know exactly what we need right now, and to some extent,
we are inventing something new. We think that as we make
it, we will figure it out as we go”

* Reduce risk by limiting time on any one stage; then reassess.
(“time-boxing”)

* Reduce risk through automated testing

Agile relies on a variety of quality-assurance
processes

 What are the costs & benefits of each of these?
* unit testing/TDD
e code review
* integration tests (as in module 12)
* continuous integration
 continuous deployment (A/B, canaries, etc.)

 How is each automatable?
* How does each address non-functional quality attributes?

* How should these be combined in an organization's
software development process?

In this module, we'll focus on CI/CD

e What are the costs & benefits of each of these?
* unit testing/TDD
e code review

integration tests (as in module 12) P mRRmTE, \/
continuous integration

continuous deployment (A/B, canaries, etc.)
* How is each automatable?

* How does each address non-functional quality attributes?

* How should these be combined in an organization's
software development process?

CI/CD practices improve code quality and
dev velocity

* Continuous integration: use automated
systems to perform and monitor frequent
integrations with entire codebase, running
integration-scale tests

* Continuous delivery: use automated systems
to perform frequent, controlled delivery of
product (often to a small fraction of the user
base), with automated monitoring to detect
remaining defects quickly.

Continuous Integration (CI) provides global
feedback on local changes

e Given: Our systems involve many components, some of
which might even be in different version control
repositories

* Consider: How does a developer get feedback on their
(local) change? Our changed code

Build Build Build Send
friends list Newsfeed Suggestions response

Other developers’ changed code

A CI process is a software pipeline

Automate this centrally, provide a central record of results

¥
l Build -l Test I

Style Check Integration Test End-to-end Test
: Our changed code
Unit Test
Build Build Build Send
friends list Newsfeed Suggestions response

Develop

Prepare
Deployment

Other developers’ changed code

CI may be triggered by commits, pull
requests, or other actions

Example: Small scale Cl, with a service like CircleCl,
GitHub Actions or TravisCl GitHub

C.
%for updates

commits code to

Developer

Git'_""‘b TravisClI
Actions

Runs build for each
commit

Automating Feedback Loops is Powerful

Consider tasks that are done by dozens of developers
(e.g. testing/deployment)

HOW LONG (AN YOU WORK ON MAKING A ROUTINE. TASK MORE

EFFCIENT BEFORE YOURE SPENDING MORE TIME THAN YOU SAVE?
(ACROSS FIVE YEARS)

MO OFTEN YOU DO THE TRSK
Ofr Sopy DALY WEEKY MONFLY YEARLY

1 seconp |[T] o | 2hoves |, 20 | r'imlura 2

MINUTES SECONDS
5 SELONDS @m |2 HOURS | 2 HouRS HNZUITES M|N§Tl-:5 sco0s

30 SEONDS |01 yexs |[3] OAYS |12 Hovks | 2 wowes | (DO 1 2

IITTT™M
M‘(‘)Oa‘:{ 1 MINUTE 8m@m¥5 1| DAY | 4 Hours | 1 HOWR mm%res

TG 5 Mues | vowms| T2 T8 oave | 21 vouks | Svows | 23
5”%‘?,_.5 30 MNUTES DAY | 2 Hows

1 HOUR [2]oAvs| 5 Hows
6 HOURS 2 wears | [L] DAY
W 8 WEEKS EDHYS

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/

https://xkcd.com/1205/

Typical CI pipeline

* Set up testing environment

* Set up tests
* Set up multiple input

* Run all tests against all inputs
* (preferably in parallel) B R —— R—

* Record results and performance in central N
db

13

You could set up multiple CI processes

* Run a short test daily
e or oftener
* maybe on every commit?

* More comprehensive test less often
* provides more accurate performance data

e Either way, you know that your integration is
working!

14

Continuous Integration is Highly
Configurable

* Determining how to apply Cl can be non-trivial for a larger project,
all with a cost vs quality tradeoff: what is the cost of automation vs
the value of developer time?

* Do we integrate changes immediately, or do a pre-commit test?
* Which tests do we run when we integrate?

* When do we integrate code review?

* How do we compose the system under test Changed code

at each point?
Newsfeed

Build

Build
Suggesuons

fnendshst\
1

Send
response

Other developers’ changed code

CI pipelines can automate performance

testing

eval-10m-5x.yml
on: push

@ evaluate [build-matrix

5s

Matrix: evaluate [run-fuzzer

@ evaluate / run-fuzzer (

@ evaluate / run-fuzzer ...
@ evaluate / run-fuzzer...
@ evaluate [run-fuzzer (...
@ evaluate / run-fuzzer (...
@ evaluate / run-fuzzer ...
@ evaluate / run-fuzzer (...
@ evaluate / run-fuzzer ...
@ evaluate / run-fuzzer (...
@ evaluate [run-fuzzer (...
@ evaluate | run-fuzzer...
@ evaluate / run-fuzzer ...
@ evaluate | run-fuzzer ...

@ evaluate / run-fuzzer-...

https://github.com/neu-se/CONFETTI/actions

.. 12m 21s

12m 25s

12m 23s

12m 27s

12m 13s

12m 24s

12m

12m

12m:

12m

12m

12m

12m

12m:

@ evaluate [repro-jacoco

5m 5s

Every commit: Rum 10 minute
performance test on 5
benchimarks, repeating each test
5 times (25 concurrent jobs)

eval-24h-20x.yml

on: workflow_dispatch

@ evaluate [build-matrix

2s

Matrix: evaluate [run-fuzzer

@ evaluate [run-fuzzer (an...

@ evaluate [run-fuzzer (bc...

@ evaluate [run-fuzzer (cl...

@ evaluate [run-fuzzer (m...
@ evaluate [run-fuzzer (rh...
@ evaluate [run-fuzzer (an...

@ -evaluate [run-fuzzer (bc...

@ evaluate [run-fuzzer (cl...

@ -evaluate / build-site

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

52s

o @ evaluate [repro-jacoco 13m 52s

evaluate / build-site

https://github.com/neu-se/CONFETTI/actions

CI pipelines can automate benchmarking

closure

Branch Probes Over Time

[T RS £

30000 —{

25000

Branch Probes Covered

15000

Campaign Time (minutes)

Download this graph as PDF

T
1500

eval-24h-20x.yml

on: workflow_dispatch

@ evaluate / build-matrix

config

——— ddbdc:

——— reportit

Matrix: evaluate [run-fuzzer

@ evaluate / run-fuzzer (an...

@ evaluate [run-fuzzer (bc...

@ evaluate [run-fuzzer (cl...

@ evaluate / run-fuzzer (m...
@ evaluate [run-fuzzer (rh...
@ evaluate [run-fuzzer (an...

@ evaluate [run-fuzzer (bc...

@ evaluate [run-fuzzer (cl...

B S

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

https://github.com/neu-se/CONFETTI/actions

o @ evaluate | repro-jacoco 13m 52s @ evaluz

On Pemand: Run 2.4 hour
performance test on 5
benchimarks, repeating each test
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions

Attributes of effective CI processes

Policies:
* Do not allow builds to remain broken for a long
time
e Cl should run for every change i

* Clshould not completely replace pre-commit
testing

Infrastructure:

* Clshould be fast, providing feedback within
minutes or hours

e Clshould be repeatable (deterministic)

+~ Output the full test name

All checks have passed
9 successful checks

v O Build and Test the Grader | build (push) Successfu... Details

v O Check dist/ [check-dist (push) Successful in 30s Details

v (@) Build and Test the Grader | test (reference) (push) ... Details i

v O Build and Test the Grader | test (b) (push) Succes... Details ;
Nataile

_~ fm\ Ruiild and Tact tha Gradar | tact (te-innara) (niich)
1zE 1cE

Tools: extract_features.py: correct define name for AP_RPM_ENABLED
’ peterbarker committed 5 days ago X

AP_Mission: prevent use of uninitialised stack data - 02
’ peterbarker committed 5 days ago X
AP_HAL_ChibiOS: disable DMA on 12C on bdshot boards to free up DMA ch... -

Q} andyp1per authored and tridge committed 6 days ago X

SITL: Fixed rounding lat/Ing issue when running JSBSim SITL -
2 ShivKhanna authored and tridge committed 6 days ago X

AP_HAL_ChibiOS: define skyviper short board names
& yuri-rage authored and tridge committed 6 days ago X

Effective CI processes are run often enough

to reduce debugging effort

* Failed Cl runs indicate a bug was
introduced, and caught in that run

* More changes per-Cl run require more
manual debugging effort to assign
blame

* A single change per-Cl run pinpoints the
culprit

B prestodb / presto

Current Branches Build History Pull Requests

v master
jﬂ James Sun

This patch bumps Alluxio dependency to 2.3.0-

| master

© Andrii Rosa

Handle query level timeouts in Presto on Spark

| master
Q Wenlei Xie

Fix flaky test for TestTempStorageSingleStream

+/ master Check requirements under try-catch

0 Andrii Rosa

/ master Introduce large dictionary mode in SliceDiction

& Maria Basmanova

| master Add Top N queries to TestHiveExternalWorkers!

& Maria Basmanova

X master Fix client-info test-name output
Leiging Cai
< master Add Thrift transport support for TaskStatus

© Andrii Rosa

</ master Update TestHiveExternalWorkersQueries to cre
& Maria Basmanova
|

-0- #52300 passed
36392a2

-o- #52287 errored

aa55ea7

-0 #52284 errored
193a4cd

-o- #52283 passed
FFf331f

- #52282 passed

746d7b5

-o- #52277 passed

ag0d97a

-0- #52271 errored
8b62d43

-o- #52266 failed

467277a

-o- #52263 passed

fc94719

More options

(© 10 hrs 49 min 31 sec

2 days ago

) 11 hrs 6 min 44 sec
[F 2days ago

(© 11 hrs 50 min 37 sec

2 days ago

11 hrs 3 min 20 sec

7 2 days ago

(© 10 hrs 55 min 37 sec

[F 2 days ago

) 10 hrs 43 min 30 sec

2 days ago

(© 10 hrs 46 min 36 sec

3 days ago

(© 10 hrs 35 min 49 sec

3days ago

© 11 hrs 13 min 42 sec

3days ago

Effective CI processes allocate enough resources
to mitigate flaky tests

* Flaky tests might be dependent on timing (failing due to timeouts)

* Running tests without enough CPU/RAM can result in increased flaky
failure rates and unreliable builds

CPU 4 and RAM 8GB
CPU 2 and RAM 16GB
CPU 2 and RAM 8GB
CPU 2 and RAM 4GB
CPU 1 and RAM 8GB
CPU 1 and RAM 4GB
CPU 0.5 and RAM 4GB
CPU 0.5 and RAM 2GB
CPU 0.25 and RAM 2GB
CPU 0.1 and RAM 2GB
CPU 0.1 and RAM 1GB

Configuration Ranked As
B Best Price

i Best Reliability
M Best Reliability and Price

0

5

“The Effects of Computational Resources on Flaky Tests”, Silva et al

10
Number of Projects

15

20

https://arxiv.org/abs/2310.12132

Challenges and Solutions for Repeatable Builds

* Which commands to run to produce an executable?
(build systems)

* How to link third-party libraries? (dependency
managers)

* How to specify system-level software
requirements? (containers)

* How to specify infrastructure requirements?
(Infrastructure as code)

Build Systems Orchestrate Software
Engineering Tasks

* “Orchestrate” -> Execute in the right order, ideally
with concurrency, example tasks:

* |nstalling dependencies
* Compiling the code
* Running static analysis
* Generating documentation
* Running tests
* Creating artifacts for customers
* Deploying Code
e Example build systems: xMake, ant, maven, gradle,
npm...

Dependency Managers Organize External
Dependencies

* Addresses this problem: “Before you compile this code, install
commons-lang from the Apache website”

* Declare a dependency using coordinates (unique ID of a package plus
version)

* Packages are archived in common repositories; fetched/linked by
dependency manager

* Dependency managers handle transitive dependencies &
* Examples: Maven, NPM, pip, cargo, apt

Specify and Depend on Package Versions with
Care

e Semantic Versioning is often expected:

 Library maintainers expected to indicate breaking
changes with version numbers

* Dependency consumers can specify constraints on
versions (e.g. accept 2.0.x)

2.0.0 2.0.0-rc.2 2.0.0-rci 1.0.0 1.0.0-beta

100%

75

B

50

Percentage of dependencies
S

25

R

0% Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH

format.

u u u
Semantic Versioning 2.0.0
Constraint type
B Exect=123)
B Bug-123)
I Minor (*1.23) Summary
B Geq=123)
. Any (%) Given a version number MAJOR.MINOR.PATCH, increment the:
Other 1. MAJOR version when you make incompatible APl changes
2. MINOR version when you add functionality in a backwards compatible manner
. 3. PATCH version when you make backwards compatible bug fixes
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

Distribution of dependencies of all packages in NPM over time (2023, Pinckney et al)

https://semver.org/

Continuous Integration Service Models

* Self-hosted/managed on-premises or in cloud
* Jenkins

* Fully cloud managed
e GitHub Actions, CircleCl, Travis, many more...

* Billing model: pay per-build-minute running on SaaS
infrastructure

» “Self-hosted runners” run builds on your own
infrastructure, usually “free”

Continuous Delivery

e “Faster is safer”: Key values of continuous delivery

* Release frequently, in small batches

* Maintain key performance indicators to evaluate the impact
of updates

* Phase roll-outs
* Evaluate business impact of new features

Continuous Delivery is about deciding which
new features to deliver, and when

* You have a large system with many engineers
working on new features (and bug fixes ©)

 When a new feature or fix is ready, how do you roll
it out to your users?

A continuous-delivery process is also a
software pipeline

Automate this centrally, provide a central record of results

¥ ¥
l Build -l Test I

Style Check Integration Test End-to-end Test
: Our changed code
Unit Test
Build Build Build Send
friends list Newsfeed Suggestions response

Develop

Prepare
Deployment

Other developers’ changed code

Continuous Delivery does not mean Immediate
Delivery

* Even if you are deploying every day
(“continuously”), you still have some latency

* A new feature | develop today won't be released
today

* But, a new feature | develop today can begin the
release pipeline today (minimizes risk)

* Release Engineer: gatekeeper who decides when
something is ready to go out, oversees the actual
deployment process

Ways to mitigate deployment risks

e Use a realistic staging environment

* Use post-deployment monitoring

* Use split deployments

e Use tools to automate deployment tasks

32

Build a staging environment to qualify
features for delivery

Developer
Environments Beta/Dogfooding User Requests

Testing
Environment

Staging Environment Production Environment

——

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)

Split Deployments Mitigate Risk

* Lower risk if a problem occurs
in staging than in production

Old Version

Web Application Database
server SEerver Server
Web Application Database
Server Server Server

Mew Version

* Or deploy to a small set of
users before deploying more
widely

Most users
[555%)

* Names:
e “Eat your own dogfood”
* Beta/Alpha testers
e A/B testing
e "canaries"

Some users
[5%)

Post-delivery monitoring mitigates risk

Consider both direct (e.g. business) metrics, and indirect
(e.g. system) metrics

Hardware

Voltages, temperatures, fan speeds, component health
OS

Memory usage, swap usage, disk space, CPU load
Middleware

Memory, thread/db connection pools, connections,
response time

Applications

Business transactions, conversion rate, status of 3rd party
components

Continuous Delivery Tools

* Simplest tools deploy from a branch to a service (e.g. Render.com,
Heroku)

* More complex tools:

* Auto-deploys from version control to a staging environment + promotes through
release pipeline

* Monitors key performance indicators to automatically take corrective actions
 Example: “Spinnaker” (Open-Sourced by Netflix, c 2015)

Find image Cutover Deploy PROD Tear down Destroy
Start from TEST Deploy CANARY manual approval (red/black) CANARY old PROD

Wait 30 mins Wait 2 hrs

Example CD pipeline from Spinnaker’s documentation: https://spinnaker.io/docs/concepts/#application-deployment

https://spinnaker.io/
https://spinnaker.io/docs/concepts/#application-deployment

Tools for Monitoring Deployments

* Nagios (c 2002): Agent-based architecture (install agent on each
monitored host), extensible plugins for executing “checks” on hosts

* Track system-level metrics, app-level metrics, user-level KPls

ﬁCIﬂGA

Q Search ... Q Search... Y
o ™
i Dashboard o Sl &
e @Q‘.\\o ‘J’b& @0& o‘?@i& & o @ @ Qeef\
3 .
© Problems = " ﬂ:\;‘?@e’ ‘O&\ \dg@‘:\oqg ro'b ¢\C;C3‘¢\\59 0(\(9 eob?looeo\{;a»: é@v&‘
9 % 2 S) o & & & %
Host Problems Oqo OQ\) 0%@ 5\(} S b\a}. Q@O ’Q'\(&Q '\C'&b\"'a‘b \“0&\“0& .o‘b QOQ QOQ\QQ‘ F ‘9\\}(fo\é ‘9\‘)‘ 9& (;;0 ‘Kq‘&Q\{’é
Service Problems esxio1
Service Grid waxigz
Current Downtimes esxio3
o exioca B @ ® [N e i
#1 Overview esxi05
9 History esxi06
esxioz @ ® 00 ® o
& Documentation .
jbhpc .

% System nagios

Monitoring can help identify operational issues

i Active Memory O
Overall Cluster Memory Usage 106
_time _value _field _measurement fuzzer host target
2022-09-0513:52:00 10.35G active mem afiplusplus_with_knobs G4PlusVM136 sqlite3
34078 0
3.20TB
66
3TB
4G
2.80TB
00:00 0200 0400 06:00 08:00 1000 1200 1400 16:00 1800 2000 22:00 2022-03-0520:00:00 2022-09-06.08:00:00
CPU Usage
Overall Cluster CPU Usage
40
1600 Ghz 35
1400 Ghz M .
1200 Ghz
25
1000 Ghz
800 Ghz
600 Ghz
400 Ghz
200 Ghz 2022-09-05 20:00:00 2022-09-06 08:00:00
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Grafana (AGPL, c 2014) InfluxDB (MIT license, ¢ 2013)

Continuous Delivery Tools Can Take Automated
Actions

* Example: Automated roll-back of updates at Netflix
based on "streams-per-second" (SPS)

SPS Legend: M Experiment M Control

PROD:US-EAST-1 PROD:US-EAST-1

SPS Client Successes (Startplays)

=SEEpE=Eg

20.0- _[
|
1

jw

- 04 |
|

|
\

I

' ! 1 ' 1 ' 1 = ' ' 1 ' ' ' '
10:30 10:33 10: 36 10:39 10: 42 10:45 10:48 10:27 10:30 10:33 10: 36 10:39 10: 42 10: 45 10: 48

MONITORING!

https://www.youtube.com/watch?v=qyzymLl|j9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

Monitoring Services Can Take Automated Actions

-%iCIﬂGA

Dashboard

© Problems

§) Overview

D History

Event Grid
Event Overview
Notifications

Timeline

& Documentation

&% System

#~ Configuration

& jon

Notifications

« 1 2 3 4 5 6 7

Q Search...

OK
2022-02-18
08:49:05

OK
2022-02-18
08:49:05

CRITICAL
2022-02-18
08:42:05

CRITICAL
2022-02-18
08:42:05

v G

24 25 » # 25 =

h

Slurm Nodes on nagios

Sort by

OK - 0 nodes unreachable, 332 reachable

Slurm Nodes on nagios

OK - 0 nodes unreachable, 332 reachable

Slurm Nodes on nagios

WARNING - 7 nodes unreachable, 326 reachable

Slurm Nodes on nagios

WARNING - 7 nodes unreachable, 326 reachable

Slurm Nodes on nagios
CRITICAL - 65 nodes unreachable,

Slurm Nodes on nagios
CRITICAL - 65 nodes unreachable,

Slurm Nodes on nagios
WARNING - 12 nodes unreachable,

Slurm Nodes on nagios
WARNING - 12 nodes unreachable,

161 reachable

161 reachable

205 reachable

205 reachable

Notification Start

v 12

Sent to jon

Sent to icingaadmin

Sent to jon

Sent to icingaadmin

Sent to icingaadmin

Sent to jon

Sent to icingaadmin

Sent to jon

Current Service State

UpP
since 2021-11

OK
for 1m 52s

Event Details
Type

Start time

End time

Reason

State

Escalated
Contacts notified

Output

Service: Slurm Nodes

Notification
2022-02-18 08:42:05
2022-02-18 08:42:05
Normal notification
@ crITICAL

No

2

CRITICAL - 65 nodes unreachable,

161 react

From Monitoring to Observability

* Understanding what is going on inside of our deployed
systems by visualizing internal metrics

17 GKE ENhanced Dasnboard v + AddWwidgets ih Past1 Hour -« m a

Saved Views e - * e e @ e T[T L[- ON High Density Mode © Events&logs 0 & &

Example dashboard by DataDog:

https://www.datadoghg.com/blog/gke-dashboards-integration-improvements/ v Nodes
Nodes by condition Nodes D: onSets CPU-intensive n... CPU usage Memory-intensi... Memory usage
b 0.27 gke-demo... 1,005 ghe-ka...
0.25 gke-demo... os 980 ghe-ka... 1 et
el L TUY 0.25 ghe-demo.. b b mad A g8, 631 gked.
) HE bopeesl LN mmm————
nodes 0.24 ghe-demo.. 0 - J 602 ghe-us.. 0 e ;
0 n L) n
- 0.24 gke-demo... 567 ghe-d...
0.23 gke-demo... T. M. Avg Max Value 563 wvm-Bb... T M Avg Max Value
& Deployments Services 0.23 gke-demo... h. av.. 0.19 027 017 559 gke-d.. h. av.. 326MiB 367 MiB 320 MIB
From the control plane to the 0.23 gke-demo... [—_— 0.21 035 016 552 gke-d... h. av. 305MiB &7 ME 411 MiB
container level, this dashboard “ 0.22 gke-demo e — - - 543 gke-d.. e el —
provides you with broad
visibility into the health and o 5 1 7 5 5 Network rate Network errors
performance of your GKE)
clusters so that you can be 1230 " !
better prepared to address o
potential issues. Memory usage by container CPU usage by container
GKE monitering guides: 10:15 10:30 10:45 11:00 ! 1015 10:30 10:48 11:00

+ Monitor GKE with Datadog ') ') w P Tags Metric Avg Max Value Tags Metric Avg Max Value
v - ~ host: gh-do Receiv, 7181 MiBfs 13338 MIB 75.06 MiB, host:ghke-demo-1128. Received By. 0 o (1]

+ Datadoqg port for GKE
- host:gke-de.. Receiv.. 11420 MiE/s 204.07 MiB 7333 MiB host:gke-demo-1128.. Received By 0 0 []

Autopilot r . Pras)
,,‘ﬂw . @ ’ b % lt B hostokede Receiv.. B1E1 MiB/s 14068 Mifi/s 97.18 MiBis B hostoke-demo-1138_. Recetved Ry 0 o 0
. ¢ 5 ey
- P

If some graphs appear empty,
check out the following:

More v Pods
CPU-intensi... 4h CPU usage Memory-int... 4n Memory usage
5.84 user-db-2 18.64 produ...
v Control Plane g —— 1529 [.
517 user-db-3 10.89 dsm-d..
465 user-db-1 10.72 dev-ds...
For the data in this section to populate you must enable GKE control plane metrics. Control plane metrics give you 447 user-db-0 . 5.04 ‘ugerd.. 0 = p
visibility into the operation of the Kubernetes control plane, which is managed by Google in GKE. 354 [Usericb-5 4.5 [iBer-d..
3.66 user-db-8 T. M. Avg Max Value 475 user-d.. T. M. Avg Max Value
API Server Latency By Method Controller Manager Nade Collector... Scheduler Latency by Result oy il P G RS SR TR 467 Bparel- il iuliiivn
¥ 9 y 310 [imongo- P Cu 157m. 3BTm. 2Am 452 Eeho-.. P M. 1434. 456.. 1432

" Ad _ . B o

https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/

Beware of Metrics

* McNamara Fallacy
* Measure whatever can be easily measured

* Disregard that which cannot be measured
easily

* Presume that which cannot be measured
easily is not important

e Presume that which cannot be measured
easily does not exist

How should we allocate our testing
resources?

* How much unit testing should be required?

* When should we do code reviews?

* How often should we do integration tests?

* Different organizations may make different choices

Two extremes: Continuous Delivery vs. TDD

e Test driven development
* Write and maintain tests per-feature (manual! hard!)
* Unit tests help locate bugs (at unit level)

* Integration/system tests also needed to locate
interaction-related faults

e Continuous delivery
* Write and maintain high-level observability metrics

* Deploy features one-at-a-time, look for canaries in
metrics

* Write fewer integration/system tests

CI at scale: Google Test Automation
Platform (TAP (2020))

* Massive continuous build of entire Google codebase
* in a dedicated data center
* 50,000 unique changes per-day, 4 billion test cases per-day

* Engineers submit unit tests along with their changes
* Block merge if they fail

* |f they pass, change is put in the codebase.
* visible to entire company!
* average wait time to this point: 11 minutes

* Then (asynchronously) run all affected integration tests

 If any fail, change is sent back to a human on the submitter's team
(the “build cop”) who must act immediately to roll-back or fix.

“Software Engineering at Google: Lessons Learned from
Programming Over Time,” Wright, Winters and Manshreck, 2020
(O’Reilly), pp. 494-497

Facebook: "Move fast and break things"

* de-prioritize unit tests
* Emphasis on getting features to users quickly

 Strategy: push many small changes to fractions of
the user base. ("split deployments")

49

Deployment Example: Facebook.com

* Pre-2016
Developers working in their own branch
-

- When feature is ready, push as 1 change to master branch

~1 week of development

master branch 3 dayS 4 days All changes that survived stabilizing

|

|

|

| ” REIEASE DI o

; G G

All changes from week
that are ready for release

release branch

i i i
i i i
i i i
i i i
i i i
v v v

4---

d t Your change doesn’t go out unless .
pProauction you’re there that day at that time to 3x Dally “When in doubt back out”
support it!

Facebook used to have an elaborate system
of branches

* dev branches got merged into master,

* then once a week all changes from the past week were
puIIek(;I into a release branch (often 10,000 changes per
wee

* For 3 days they “stabilized” the release branch — find
changes that are causing very bad behavior and back
them out. (manual process!!Y

* Then for the last 4 days of the week, every change that
survived that stabilization got individually pushed to
production batched so that this happens 3x/day.

* Important to do small deploys so that you could isolate
bad changes.

Deployment Example

ee “Our main goal was to make sure that the
new system made people’s experience
better — or at least, didn't make it worse.
After a year of planning and development,
over the course of three days we enabled
100% of our production web servers to
run code deployed directly from master”

* Chuck Rossi, Director Software Infrastructure &
Release Engineering @ Facebook

“‘Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Post-2016: truly continuous releases from
master branch

. : Push-blocking alerts
%
100% production { Push-blocking tasks l

Crashbot for WWW
Emergency button

29 production Push-hluckingahrtsl

Push-blocking tasks
Emergency button

C1

employees

ik F
Master]

Post-2016: Truly Continuous Releases from
Master Branch (excerpts from blog post)

1. First, diffs that have passed a series of automated internal tests and land in master
are pushed out to Facebook employees.

2. Inthis stage, get push-blocking alerts if we’ve introduced a regression, and an
emergency stop button lets us keep the release from going any further.

3. Ifeverything is OK, push the changes to 2 percent of production, where again we
collect signal and monitor alerts, especially for edge cases that our testing or
employee dogfooding may not have picked up.

4. Finally, roll out to 100 percent of production, where our Flytrap tool aggregates user
reports and alerts us to any anomalies.

5. Many of the changes are initially kept behind feature flags, which allows to roll out
mobile and web code releases independently from new features, helping to lower
the risk of any particular update causing a problem.

6. Ifwedofind a problem, simply switch the feature off rather than revert back to a

previous version or fix forward.

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

What not to do: Failed Deployment at Knight

Ca p | ta | “In the week before go-live, a Knight engineer manually
deployed the new RLP code in SMARS to its 8 servers. However,

Knightmare: A DeVOpS he made a mistake and did not copy the new code to one of the

servers. Knight did not have a second engineer review the

Cautionar’y Tale deployment, and neither was there an automated system to

alert anyone to the discrepancy. “

[was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.

Since that conference [have been asked by several people to share the story through my blog.
This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

This is the story of how a company with nearly $400 million in assets went bankrupt in 45-

minutes because of a failed deployment.

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What could Knight capital have done better?

* Use capture/replay testing instead of driving
market conditions in a test

* Avoid including “test” code in production
deployments

 Automate deployments
* Define and monitor risk-based KPIs
 Create checklists for responding to incidents

Review

* By now, you should be able to...

* Describe how continuous integration helps to
catch errors sooner in the software lifecycle

e Describe strategies for performing quality-
assurance on software as and after it is delivered

 Compare and contrast continuous delivery with
test driven development as a quality assurance
strategy

	CS 4530: Fundamentals of Software Engineering�Module 13: Continuous Development
	Learning objectives for this lesson
	Review: The Agile Model Reduces Risk by Embracing Change (~2000)
	Agile relies on a variety of quality-assurance processes
	In this module, we'll focus on CI/CD
	CI/CD practices improve code quality and dev velocity
	Continuous Integration (CI) provides global feedback on local changes
	A CI process is a software pipeline
	CI may be triggered by commits, pull requests, or other actions
	Automating Feedback Loops is Powerful
	Typical CI pipeline
	You could set up multiple CI processes
	Continuous Integration is Highly Configurable
	CI pipelines can automate performance testing
	CI pipelines can automate benchmarking
	Attributes of effective CI processes
	Effective CI processes are run often enough to reduce debugging effort
	Effective CI processes allocate enough resources to mitigate flaky tests
	Challenges and Solutions for Repeatable Builds
	Build Systems Orchestrate Software Engineering Tasks
	Dependency Managers Organize External Dependencies
	Specify and Depend on Package Versions with Care
	Continuous Integration Service Models
	Continuous Delivery
	Continuous Delivery is about deciding which new features to deliver, and when
	A continuous-delivery process is also a software pipeline
	Continuous Delivery does not mean Immediate Delivery
	Ways to mitigate deployment risks
	Build a staging environment to qualify features for delivery
	Split Deployments Mitigate Risk
	Post-delivery monitoring mitigates risk
	Continuous Delivery Tools
	Tools for Monitoring Deployments
	Monitoring can help identify operational issues
	Continuous Delivery Tools Can Take Automated Actions
	Monitoring Services Can Take Automated Actions
	From Monitoring to Observability
	Beware of Metrics
	How should we allocate our testing resources?
	Two extremes: Continuous Delivery vs. TDD
	CI at scale: Google Test Automation Platform (TAP (2020))
	Facebook: "Move fast and break things"
	Deployment Example: Facebook.com
	Facebook used to have an elaborate system of branches
	Deployment Example
	Post-2016: truly continuous releases from master branch
	Post-2016: Truly Continuous Releases from Master Branch (excerpts from blog post)
	What not to do: Failed Deployment at Knight Capital
	What could Knight capital have done better?
	Review

